Molecular Characterization of Direct Target Genes and cis-Acting Consensus Recognized by Quorum-Sensing Regulator AphA in Vibrio parahaemolyticus

نویسندگان

  • Fengjun Sun
  • Yiquan Zhang
  • Li Wang
  • Xiaojuan Yan
  • Yafang Tan
  • Zhaobiao Guo
  • Jingfu Qiu
  • Ruifu Yang
  • Peiyuan Xia
  • Dongsheng Zhou
چکیده

BACKGROUND AphA is the master quorum-sensing (QS) regulator operating at low cell density in vibrios. Molecular regulation of target genes by AphA has been characterized in Vibrio harveyi and V. cholerae, but it is still poorly understood in V. parahaemolyticus. METHODOLOGY/PRINCIPAL FINDINGS The AphA proteins are extremely conserved in V. parahaemolyticus, Vibrio sp. Ex25, Vibrio sp. EJY3, V. harveyi, V. vulnificus, V. splendidus, V. anguillarum, V. cholerae, and V. furnissii. The above nine AphA orthologs appear to recognize conserved cis-acting DNA signals which can be represented by two consensus constructs, a 20 bp box sequence and a position frequency matrix. V. parahaemolyticus AphA represses the transcription of ahpA, qrr4, and opaR through direct AphA-target promoter DNA association, while it inhibits the qrr2-3 transcription in an indirect manner. Translation and transcription starts, core promoter elements for sigma factor recognition, Shine-Dalgarno sequences for ribosome recognition, and AphA-binding sites (containing corresponding AphA box-like sequences) were determined for the three direct AphA targets ahpA, qrr4, and opaR in V. parahaemolyticus. CONCLUSIONS/SIGNIFICANCE AphA-mediated repression of ahpA, qrr2-4, and opaR was characterized in V. parahaemolyticus by using multiple biochemical and molecular experiments. The computational promoter analysis indicated the conserved mechanism of transcriptional regulation of QS regulator-encoding genes ahpA, qrr4, and opaR in vibrios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional Regulation of opaR, qrr2–4 and aphA by the Master Quorum-Sensing Regulator OpaR in Vibrio parahaemolyticus

BACKGROUND Vibrio parahaemolyticus is a leading cause of infectious diarrhea and enterogastritis via the fecal-oral route. V. harveyi is a pathogen of fishes and invertebrates, and has been used as a model for quorum sensing (QS) studies. LuxR is the master QS regulator (MQSR) of V. harveyi, and LuxR-dependent expression of its own gene, qrr2-4 and aphA have been established in V. harveyi. Mole...

متن کامل

Cell Density- and Quorum Sensing-Dependent Expression of Type VI Secretion System 2 in Vibrio parahaemolyticus

BACKGROUND Vibrio parahaemolyticus AphA and OpaR are the two master quorum sensing (QS) regulators that are abundantly expressed at low cell density (LCD) and high cell density (HCD), respectively, with a feature of reciprocally gradient production of them with transition between LCD and HCD. The type VI secretion system 2 (T6SS2) gene cluster can be assigned into three putative operons, namely...

متن کامل

Transcriptional Regulation of the Type VI Secretion System 1 Genes by Quorum Sensing and ToxR in Vibrio parahaemolyticus

Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis, harbors two separate T6SSs on chromosomes 1 and 2, i.e., T6SS1 (VP1386-1420) and T6SS2 (VPA1025-1046). T6SS1 contains at least 7 putative operons: VP1386-1387, VP1388-1390, VP1392-1391, VP1393-1406, VP1400-1406, VP1409-1407, and VP1410-1420. V. parahaemolyticus AphA and OpaR are the two master regulators of quorum...

متن کامل

In silico structural analysis of quorum sensing genes in Vibrio fischeri

Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...

متن کامل

AphA and LuxR/HapR reciprocally control quorum sensing in vibrios.

Bacteria cycle between periods when they perform individual behaviors and periods when they perform group behaviors. These transitions are controlled by a cell-cell communication process called quorum sensing, in which extracellular signal molecules, called autoinducers (AIs), are released, accumulate, and are synchronously detected by a group of bacteria. AI detection results in community-wide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012